Задание 19 из ЕГЭ по математике (профиль): задача 62

Разбор сложных заданий в тг-канале:

В ряд выписаны $n$ натуральных чисел. Сумма любых четырёх последовательных чисел равна $12$.

а) Возможно ли, что сумма всех чисел равна $6050$, если $n = 2016$?

б) Возможно ли, что сумма всех чисел равна $6050$, если $n = 2017$?

в) Для каждого $n (n≥4)$ определите, сколько различных значений может принимать сумма $n$ чисел с таким свойством.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

Музыкальную школу посещают более $20$ и менее $45$ учащихся. На областной конкурс было заявлено более половины ребят из музыкальной школы, но потом ровно один из них отказался участвов…

Боря задумал трёхзначное натуральное число $n$. В результате деления этого числа на сумму его цифр получается натуральное число $m$. а) Может ли $m$ быть равно 10? б) Какое наибольшее чи…

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=15$; б) $n=33$;…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!