Задание 19 из ЕГЭ по математике (профиль): задача 8
На сайте провели опрос, кого из $165$ певцов посетители считают лучшим певцом года. На сайте отображается рейтинг каждого певца — доля голосов, отданная за него, в процентах, округлённая до целого числа. Например, числа $9{,}7$; $6{,}5$; $11{,}2$ округляются соответственно до $10$; $7$; $11$. а) Может ли один из певцов получить рейтинг $11$, если всего проголосовало $13$ человек? б) Всего проголосовали $33$ человека. Какое наибольшее число певцов могут иметь рейтинг не меньше $10$? в) Чему равна наименьшая возможная сумма рейтингов?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В ряд выписаны $n$ натуральных чисел. Сумма любых пяти последовательных чисел равна $20$.
а) Возможно ли, что сумма всех чисел равна $8071$, если $n = 2015$?
б) Возможно ли, что сумма всех…
Имеется прямоугольная таблица размером $M×N$, заполненная числами 0 и 1, обладающая следующими свойствами. Во-первых, в каждой строке и в каждом столбце есть хотя бы один элемент, ра…
Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:
а) пять чисел;
б) пятьдесят чисел;
в) бесконечное множество чисел, ко…