Задание 19 из ЕГЭ по математике (профиль): задача 7
Имеется уравнение $kx^2+mx+q =0 $, числа $k$, $m$, $q$ — целые, $k≠0$. а) Возможно ли, что уравнение имеет два различных корня, ровно один из которых является целым числом, если известно, что $m=-50$ и $q=600$? б) Найдите все возможные значения $k$, если $m=k$, $q=30$ и уравнение имеет два различных целых корня? в) Известно, что $k^2+m^2+q^2=150$, причём $m$ и $q$ имеют разные знаки, а уравнение имеет два различных целых корня. Найдите все возможные значения корней.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
На доске выписаны числа $7$ и $9$. За один ход выписанные числа $a$ и $b$ нужно заменить числами $(a+b-1)$ и $(2b+4)$. Например, из чисел $7$ и $9$ можно получить либо числа $15$ и $18$, либо числа $15$ …
Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего. Сумма все…
Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:
а) пять чисел;
б) пятьдесят чисел;
в) бесконечное множество чисел, ко…