Задание 19 из ЕГЭ по математике (профиль): задача 7

Разбор сложных заданий в тг-канале:

Имеется уравнение kx2+mx+q=0, числа k, m, q — целые, k0. а) Возможно ли, что уравнение имеет два различных корня, ровно один из которых является целым числом, если известно, что m=50 и q=600? б) Найдите все возможные значения k, если m=k, q=30 и уравнение имеет два различных целых корня? в) Известно, что k2+m2+q2=150, причём m и q имеют разные знаки, а уравнение имеет два различных целых корня. Найдите все возможные значения корней.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Имеется прямоугольная таблица размером M×N, заполненная числами 0 и 1, обладающая следующими свойствами. Во-первых, в каждой строке и в каждом столбце есть хотя бы один элемент, ра…

Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего. Сумма все…

В школе три одиннадцатых класса: «А», «Б» и «В». В октябре объявили сбор макулатуры, каждый ученик принёс целое число килограммов макулатуры. В классе «А» каждый ученик принёс мень…

Можно ли в бесконечно убывающей последовательности 1;12;13;14;15;... выбрать:

а) пять чисел;

б) пятьдесят чисел;

в) бесконечное множество чисел, ко…