Задание 19 из ЕГЭ по математике (профиль): задача 44

Разбор сложных заданий в тг-канале:

Имеется прямоугольная таблица размером $M×N$, заполненная числами 0 и 1, обладающая следующими свойствами. Во-первых, в каждой строке и в каждом столбце есть хотя бы один элемент, равный 1. Вовторых, нет ни одной пары одинаковых строк, а также ни одной пары одинаковых столбцов. Таблицы, обладающие этими свойствами, назовём хорошими.

Две таблицы назовём эквивалентными в том (и только том) случае, если из одной из них можно получить другую путём перестановки строк и/или столбцов. Приведём пример двух эквивалентных таблиц размером $3×3$.

1 1 1
1 1 0
0 1 0

 

1 0 1
0 0 1
1 1 1

Вторая таблица получается из первой сначала перестановкой в ней 1-й и 3-й строк, потом 2-го и 3-го столбца в полученной таблице и, наконец, 1-й и 2-й строки в последней полученной таблице.

а) Сколько существует различных попарно неэквивалентных хороших таблиц размером $2×2$?

б) Укажите количество всех таблиц, эквивалентных "хорошей" таблице.

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

в) 1. Какое минимальное число строк может быть в "хорошей" таблице, содержащей N столбцов?

2. Приведите пример "хорошей" таблицы, содержащей 4 столбца и минимально возможное число строк в ней (в ответе укажите таблицу, которая содержит максимальное число единиц, и её столбцы запишите по убыванию десятичных чисел, соответствующих этим столбцам и рассматриваемых как числа в двоичной системе с расположением цифр сверху вниз).

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Вова задумал натуральное число $a$ и посчитал сумму его цифр, эту сумму он обозначил $b$. Затем он посчитал сумму цифр числа $b$ и обозначил её через $c$. Оказалось, что среди чисел $a$, $b$ и…

На доске написаны числа 1, 2, 3, ..., 36. За один ход разрешается стереть произвольные три числа, сумма которых больше 59 и отлична от каждой из сумм троек чисел, стёртых на предыд…

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…