Задание 19 из ЕГЭ по математике (профиль): задача 18
Администраторы сайта «Математические задачи и головоломки» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе принимают участие $6$ человек. Каждый участник за лучшую (по его мнению) задачу даёт $5$ баллов, за следующую — $4$ балла, и так далее, за пятую — $1$ балл. По каждой задаче баллы суммировались, так определялся рейтинг задачи. а) Могли ли все рейтинги быть простыми числами? б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных? в) Какова минимальная сумма третьего и четвёртого рейтингов, если им дали номера в порядке невозрастания?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:
а) $x + S(x) = 2015$;
б) $x + S(x) + S(S(x)) = 2015$;
в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…
Боря задумал трёхзначное натуральное число $n$. В результате деления этого числа на сумму его цифр получается натуральное число $m$. а) Может ли $m$ быть равно 10? б) Какое наибольшее чи…