Задание 19 из ЕГЭ по математике (профиль): задача 18

Разбор сложных заданий в тг-канале:

Администраторы сайта «Математические задачи и головоломки» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе принимают участие $6$ человек. Каждый участник за лучшую (по его мнению) задачу даёт $5$ баллов, за следующую — $4$ балла, и так далее, за пятую — $1$ балл. По каждой задаче баллы суммировались, так определялся рейтинг задачи. а) Могли ли все рейтинги быть простыми числами? б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных? в) Какова минимальная сумма третьего и четвёртого рейтингов, если им дали номера в порядке невозрастания?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Имеется прямоугольная таблица размером $M×N$, заполненная числами 0 и 1, обладающая следующими свойствами. Во-первых, в каждой строке и в каждом столбце есть хотя бы один элемент, ра…

а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…

Люба задумала трёхзначное натуральное число $n$ и посчитала сумму его цифр $s$. а) Возможно ли, что $n⋅ s = 27080$? б) Найдите все возможные значения $n$, при которых $n⋅ s=400$. в) Известно…

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы о…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!