Задание 19 из ЕГЭ по математике (профиль): задача 16

Разбор сложных заданий в тг-канале:

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=15$; б) $n=33$; в) $n=63$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Максим задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=1624$? б) Может ли $n⋅ s=1005$? в) Известно, что $n⋅ s<4738$. Найдите наибольшее возможное значение выражения $n⋅ s$.

Вова задумал натуральное число $a$ и посчитал сумму его цифр, эту сумму он обозначил $b$. Затем он посчитал сумму цифр числа $b$ и обозначил её через $c$. Оказалось, что среди чисел $a$, $b$ и…

На доске записаны числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 27 и отлична от к…

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд мож…