Задание 19 из ЕГЭ по математике (профиль): задача 16

Разбор сложных заданий в тг-канале:

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=15$; б) $n=33$; в) $n=63$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Люба задумала трёхзначное натуральное число $n$ и посчитала сумму его цифр $s$. а) Возможно ли, что $n⋅ s = 27080$? б) Найдите все возможные значения $n$, при которых $n⋅ s=400$. в) Известно…

Максим задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=1624$? б) Может ли $n⋅ s=1005$? в) Известно, что $n⋅ s<4738$. Найдите наибольшее возможное значение выражения $n⋅ s$.

Учитель задумал несколько различных целых чисел и выписал набор этих чисел и все их возможные суммы (по 2, по 3 и т.д. слагаемых) на доске в порядке неубывания. Например, если бы о…

а) Дана непостоянная арифметическая прогрессия с натуральными членами $a_n$. Последовательность $c_n$ сформирована по правилу $c_n = a_n^2 + a_{n+2}^2$. Сколько простых членов подряд мож…