Задание 19 из ЕГЭ по математике (профиль): задача 29

Разбор сложных заданий в тг-канале:

Множество чисел, состоящее не меньше чем из трёх элементов, назовём «разделимым», если его можно разбить на два непустых подмножества с одинаковым произведением чисел. Если какое-то из этих подмножеств состоит из одного числа, то произведение его чисел равно этому числу. а) Является ли множество $\{2; 3; 4; 5; 6; 10; 20; 90\}$ разделимым? б) Является ли множество $\{6; 6^2; 6^3; …; 6^{200}\}∪\{2^{64000}\}$ разделимым? в) Сколько разделимых подмножеств существует у множества $\{0, 1, 3, 5, 9, 15, 25, 40, 50\}$?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

$10$ человек стоят по кругу, все они разного возраста. Каждый сказал: «Я старше обоих своих соседей». а) Могло ли оказаться так, что все сказали правду? б) Могло ли оказаться так, чт…

Множество чисел назовём красивым, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество {500; 501; 502; ... 599} красивым?

б) Является ли м…

Люба задумала трёхзначное натуральное число $n$ и посчитала сумму его цифр $s$. а) Возможно ли, что $n⋅ s = 27080$? б) Найдите все возможные значения $n$, при которых $n⋅ s=400$. в) Известно…

На доске записаны числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. За один ход разрешается стереть произвольно три числа, сумма которых меньше 27 и отлична от к…