Задание 19 из ЕГЭ по математике (профиль): задача 38
Последовательность натуральных чисел: $1, 3, 6, 10, 15, …$ задана формулой $a_n={1} / {2}n(n+1)$. Можно ли среди а) её членов, меньших числа $100$, выбрать семь чисел так, чтобы одно из них равнялось сумме остальных? б) её членов, меньших числа $100$, выбрать восемь чисел так, чтобы одно из них равнялось сумме остальных? в) членов этой последовательности выбрать $100$ чисел так, чтобы одно из них равнялось сумме остальных?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Дима задумал натуральное число $n$ и посчитал сумму его цифр $s$. а) Возможно ли, что $n⋅ s=35$? б) Может ли $n⋅ s$ равняться $1552$? в) Известно, что $n⋅ s < 14300$ и $n$ — трёхзначное число. Найдите наибольшее возможное значение $n$.
Можно ли в бесконечно убывающей последовательности $1; {1}/ {2} ; {1}/{3} ; {1}/{4} ; {1}/ {5} ; . . .$ выбрать:
а) пять чисел;
б) пятьдесят чисел;
в) бесконечное множество чисел, ко…
Дана последовательность натуральных чисел, в которой каждое число, кроме первого и последнего, больше среднего арифметического соседних с ним членов этой последовательности.
а) При…