Задание 19 из ЕГЭ по математике (профиль): задача 35
Витя написал на доске несколько (не меньше двух) различных натуральных чисел, каждое из которых делится нацело на $3$ и оканчивается на $2$. а) Может ли их среднее арифметическое делиться нацело на $11$? б) Может ли их сумма равняться $350$? в) Какое наименьшее количество чисел может быть выписано на доску, если их среднее арифметическое является наименьшим возможным для данного количества чисел, но при этом превышает $1000$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Множество чисел назовём отличным, если его можно разбить на два подмножества с одинаковой суммой чисел.
а) Является ли множество {300; 301; 302; ... 399} отличным?
б) Является ли м…
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {2}$ этого числа? б) Существует ли трёхзначное натуральное число, произведение цифр которого ра…
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {6}$ этого числа? б) Существует ли двузначное натуральное число, произведение цифр которого рав…