Задание 19 из ЕГЭ по математике (профиль): задача 35
Витя написал на доске несколько (не меньше двух) различных натуральных чисел, каждое из которых делится нацело на $3$ и оканчивается на $2$. а) Может ли их среднее арифметическое делиться нацело на $11$? б) Может ли их сумма равняться $350$? в) Какое наименьшее количество чисел может быть выписано на доску, если их среднее арифметическое является наименьшим возможным для данного количества чисел, но при этом превышает $1000$?
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Света задумала трёхзначное натуральное число, не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 40?
б) Может ли частное этого числа и суммы его цифр быть…
Все члены последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в $5$ раз больше, либо в $5$ раз меньше предыдущего. Сумма все…
а) Существует ли двузначное натуральное число, произведение цифр которого равно ${1} / {6}$ этого числа? б) Существует ли двузначное натуральное число, произведение цифр которого рав…