Задание 19 из ЕГЭ по математике (профиль): задача 26

Разбор сложных заданий в тг-канале:

На полигоне расположены 500 узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно 2 узла, между любыми двумя узлами проходит не более одного провода). Система узлов связна, то есть из любого узла можно передать сигнал в любой другой (возможно, через промежуточные узлы). Будем называть узел существенным, если его ликвидация приводит к тому, что система оставшихся узлов перестаёт быть связной. При ликвидации узла все провода, которые вели непосредственно к нему, перестают функционировать. а) Может ли в системе не быть существенных узлов? б) Может ли каждый существенный узел быть соединён только с несущественными, если существенных узлов ровно 2? в) Какое наибольшее число узлов могут быть существенными, если каждый существенный узел соединён прямыми проводами исключительно с несущественными узлами?

Объект авторского права ООО «Легион»

Посмотреть решение

Бесплатный интенсив по математике (профиль)

На бесплатном интенсиве ты:

✅ Сможешь увеличить свой результат с нуля на 40 баллов, решишь 100+ прототипов

✅ Изучишь основные темы по профильной математике, узнаешь лайфхаки и разберёшься в структуре всего экзамена

✅ Наработаешь твердую базу и заполнишь пробелы предыдущих лет

У тебя будет:

  • 1 онлайн-вебинар по 1 часу в неделю.
  • Домашка после каждого веба без дедлайна (делай, когда тебе удобно).
  • Скрипты, конспекты, множество полезных материалов.
  • Удобный личный кабинет: расписание вебов, домашки, твой прогресс и многое другое.
  • Отдельная беседа в ТГ с сокурсниками и преподавателями.

Вместе с этой задачей также решают:

Имеется уравнение ax2+bx+c=0, числа a, b, c — целые, a0. а) Найдите все возможные значения b, если известно, что a=10, c=30, а уравнение имеет два различных целых корня. б) На…

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

Множество чисел, состоящее не меньше чем из трёх элементов, назовём «правильным», если его можно разбить на два непустых подмножества с одинаковым произведением чисел. Если какое-т…

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x+S(x)=2015;

б) x+S(x)+S(S(x))=2015;

в) x+S(x)+S(S(x))+S(S(S(x)))=2015.