Задание 19 из ЕГЭ по математике (профиль): задача 26

Разбор сложных заданий в тг-канале:

На полигоне расположены $500$ узлов связи, некоторые из которых соединены проводами (провода прямые, один провод соединяет ровно $2$ узла, между любыми двумя узлами проходит не более одного провода). Система узлов связна, то есть из любого узла можно передать сигнал в любой другой (возможно, через промежуточные узлы). Будем называть узел существенным, если его ликвидация приводит к тому, что система оставшихся узлов перестаёт быть связной. При ликвидации узла все провода, которые вели непосредственно к нему, перестают функционировать. а) Может ли в системе не быть существенных узлов? б) Может ли каждый существенный узел быть соединён только с несущественными, если существенных узлов ровно $2$? в) Какое наибольшее число узлов могут быть существенными, если каждый существенный узел соединён прямыми проводами исключительно с несущественными узлами?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Стрелок ведёт стрельбу по закрывающимся $4n-1 (n ∈ N, n > 1)$ мишеням, расположенным в одну линию друг за другом. Результаты стрельбы заносятся в одну строку, состоящую из $4n - 1$ кле…

Пусть S(x) - сумма цифр натурального числа x. Решите уравнения:

а) x + S(x) = 2017;

б) x + S(x) + S(S(x)) = 2017;

в) x + S(x) + S(S(x)) + S(S(S(x))) = 2017.

Олег задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=3402$? б) Может ли $n⋅ s=6912$? в) Известно, что $n⋅ s>1786$. Найдите наименьшее возможное зна…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!