Задание 19 из ЕГЭ по математике (профиль): задача 23

Разбор сложных заданий в тг-канале:

Олег задумал трёхзначное натуральное число $n$ и посчитал сумму его цифр $s$. а) Может ли $n⋅ s=3402$? б) Может ли $n⋅ s=6912$? в) Известно, что $n⋅ s>1786$. Найдите наименьшее возможное значение выражения $n⋅ s$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Можно ли первые $n$ натуральных чисел разбить на группы по три числа в каждой так, чтобы в каждой группе одно из чисел равнялось сумме двух других? Решите задачу для: а) $n=12$; б) $n=21$;…

Множество чисел назовём отличным, если его можно разбить на два подмножества с одинаковой суммой чисел.

а) Является ли множество {300; 301; 302; ... 399} отличным?

б) Является ли м…

Пусть $S(x)$ - сумма цифр натурального числа $x$. Решите уравнения:

а) $x + S(x) = 2015$;

б) $x + S(x) + S(S(x)) = 2015$;

в) $x + S(x) + S(S(x)) + S(S(S(x))) = 2015$.

Администраторы сайта «Математические головоломки и задачи» проводят конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно присылают каждый свою задачу. После публи…