Задание 22 из ОГЭ по математике. Страница 2
Постройте график функции $y=-1+{x^10+x^9}/{x^8+x^7}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
Постройте график функции $y={x^4+x^3}/{x^2+x}+2$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
Постройте график функции $y={x^4-2x^2-8}/{(x-2)(x+2)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее так…
Постройте график функции $y={x^4-10x^2+9}/{(x-1)(x+1)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее та…
Постройте график функции $y={x^4-26x^2+25}/{(x+1)(x-5)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее т…
Постройте график функции $y={x^4-5x^2+4}/{(x-1)(x-2)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее так…
Постройте график функции $y={x^4-17x^2+16}/{(x-4)(x-1)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее т…
При каком наибольшем значении $a$ прямая $y=ax-2$ имеет с графиком функции $y=x^2-1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
Постройте график функции $y=x^2-x-4|{x-1}|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно одну общую точку.
Постройте график функции $y=x^2-x-2|x-1|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-2,25$
2. $p∈(-2,25; 0)∪(0; +∞)$
3. $p∈(-2,25; -0,25)∪(0; +∞)$
…
Постройте график функции $y=x^2-2|x-1|-2x+4$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
Постройте график функции $y=x^2-|5x|+4$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
Постройте график функции $y=x^2-|4x|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
1. $p=0$
2. $p=-4$
3. $p∈(-4; 0)$
4. $p∈(0; +∞)$
Постройте график функции $y=|x|(x+1)-3x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-1$ и $p=4$
2. $p=-4$
3. $p∈(-1; 4)∪(4; +∞)$
4. …
Постройте график функции $y=|x|(x+2)-4x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
1. $p=-1$
2. $p=-9$
3. $p∈(-1; 0)∪(9; +∞)$
4. $p∈(-1; 9)$
…
Постройте график функции $y=|x|(x-1)-5x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p∈(-∞; -9)∪(4; +∞)$
2. $p=-9$ и $p=4$
3. $p∈(-9; 4)$
…
Постройте график функции $y=x^2-5|x|+x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-9$
2. $p=-4$
3. $p∈(-9; -4)∪(0; +∞)$
4. $p∈(-9; 4)$
…
Постройте график функции $y=x^2-3|x|+x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки. В ответ запишите наибольшее такое значение.
Постройте график функции $y=x^2-4|x|-2x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно одну общую точку.