Задание 22 из ОГЭ по математике: задача 35

Разбор сложных заданий в тг-канале:

Постройте график функции $y=|x|(x+1)-3x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-1$ и $p=4$
2. $p=-4$
3. $p∈(-1; 4)∪(4; +∞)$
4. $p∈(-1; 4)$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.

Постройте график функции $y={x^5+x^4}/{x^3+x^2}-3$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!