Задание 22 из ОГЭ по математике: задача 35
Постройте график функции $y=|x|(x+1)-3x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-1$ и $p=4$
2. $p=-4$
3. $p∈(-1; 4)∪(4; +∞)$
4. $p∈(-1; 4)$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=x^2-5|x|+x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-9$
2. $p=-4$
3. $p∈(-9; -4)∪(0; +∞)$
4. $p∈(-9; 4)$
…
Постройте график функции ${(√{x^2+4x+3})^2}/{x+1}$ и определите, при каких значениях $k$ прямая $y=kx$ не имеет с графиком данной функции общих точек.
1. $k=0$
2. $k=-2$
3. $k∈[-2; 0)∪{{1}}$
4…
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.