Задание 22 из ОГЭ по математике: задача 30
Постройте график функции $y=x^2-x-4|{x-1}|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно одну общую точку.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(4x+2y-1)^2+(4x-12y-36)^2$? В ответ запишите значение переменной $x$.
Постройте график функции ${(√{x^2-x-6})^2}/{x+2}$ и определите, при каких значениях $m$ прямая $y=m$ не имеет с графиком данной функции общих точек.
1. $m∈[-5; 0)$
2. $m=-5$
3. $m=0$
4. $m∈(0; +∞)$
…