Задание 22 из ОГЭ по математике: задача 30
Постройте график функции $y=x^2-x-4|{x-1}|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно одну общую точку.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(4x+2y-1)^2+(4x-12y-36)^2$? В ответ запишите значение переменной $x$.
Постройте график функции ${(√{x^2-8x+15})^2}/{x-3}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=0$
2. $a=-2$
3. $a∈[-2; 0)$
4. $a∈(0; +∞)$
…
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.