Задание 22 из ОГЭ по математике: задача 13

Разбор сложных заданий в тг-канале:

Известно, что квадратичная функция проходит через точки $(0; 5)$, $(-3; -7)$ и $(3; -55)$. Найдите координату вершины $x_в$ данной параболы.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Постройте график функции $y={|x-1|}-{|3-x|}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
1. $a=-2$
2. $a=2$
3. $a∈(-2; 2)$
4. $a∈(2; +∞)$

Постройте график функции $y=-{x+2}/{x^2+2x}+1$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку.

Постройте график функции $y=1-{2x+1} / {2x^2+x}$ и определите, при каких значениях параметра $n$ прямая $y=n$ не имеет с графиком ни одной общей точки.

Постройте график функции $y=\{{\table {4x-2, \text ' при 'x<2}; {-x+8, \text ' при ' 2≤x<4}; {2x-4,\text ' при ' x≥4};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!