Задание 22 из ОГЭ по математике: задача 12

Разбор сложных заданий в тг-канале:

Известно, что квадратичная функция проходит через точки $(0; 1)$, $(1; 6)$ и $(4; 9)$. Найдите координату вершины $x_в$ данной параболы.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Постройте график функции $y={|x-1|}-{|3-x|}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
1. $a=-2$
2. $a=2$
3. $a∈(-2; 2)$
4. $a∈(2; +∞)$

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(-x+3y-6)^2+(x-y+2)^2$? В ответ запишите значение переменной $x$.

Постройте график функции $y=x^2-|4x|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
1. $p=0$
2. $p=-4$
3. $p∈(-4; 0)$
4. $p∈(0; +∞)$

Постройте график функции $y=-{x+2}/{x^2+2x}+1$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!