Задание 22 из ОГЭ по математике: задача 53
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=x^2-5|x|+x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-9$
2. $p=-4$
3. $p∈(-9; -4)∪(0; +∞)$
4. $p∈(-9; 4)$
…
Постройте график функции $y=-{x+2}/{x^2+2x}+1$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку.
Найдите все значения $k$, при каждом из которых прямая $y=kx$ имеет с графиком функции $y=-x^2-1$ ровно одну общую точку. Постройте этот график и все такие прямые.