Задание 22 из ОГЭ по математике: задача 53
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
Постройте график функции $y=\{{\table {4x-2, \text ' при 'x<2}; {-x+8, \text ' при ' 2≤x<4}; {2x-4,\text ' при ' x≥4};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.
Постройте график функции $y={(x^2+2x-3)(x^2+3x-10)} / {x^2+x-6}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком ровно одну общую точку.