Задание 22 из ОГЭ по математике: задача 90
Постройте график функции $y=|x|(x-4)-2x$ и определите, при каких значениях $m$ прямая $y=m$ имеет с графиком ровно две общие точки.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что квадратичная функция проходит через точки $(0; 5)$, $(-3; -7)$ и $(3; -55)$. Найдите координату вершины $x_в$ данной параболы.
Найдите все значения $k$, при каждом из которых прямая $y=kx$ имеет с графиком функции $y=-x^2-4$ ровно одну общую точку. Постройте этот график и все такие прямые.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.