Задание 22 из ОГЭ по математике: задача 57

Разбор сложных заданий в тг-канале:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(3x-4y+8)^2+(3x+3y-6)^2$? В ответ запишите значение переменной $x$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что квадратичная функция проходит через точки $(0; 5)$, $(-3; -7)$ и $(3; -55)$. Найдите координату вершины $x_в$ данной параболы.

Постройте график функции $y=\{{\table {4x-2, \text ' при 'x<2}; {-x+8, \text ' при ' 2≤x<4}; {2x-4,\text ' при ' x≥4};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.

Постройте график функции $y=|x|(x-1)-5x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p∈(-∞; -9)∪(4; +∞)$
2. $p=-9$ и $p=4$
3. $p∈(-9; 4)$

Постройте график функции $y=-{x+2}/{x^2+2x}+1$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!