Задание 22 из ОГЭ по математике: задача 93
Постройте график функции $y={(x^2+3x)|x|} / {x+3}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком ни одной общей точки.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|3x-4y+8|+|3x+3y-6|$? В ответ запишите значение переменной $x$.
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.