Задание 22 из ОГЭ по математике: задача 71
Постройте график функции $y={|x-2|}+{|x-5|}+x-5$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=0$
2. $a=2$
3. $a∈(-∞; 0)$
4. $a∈(0; +∞)$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Найдите все значения $k$, при каждом из которых прямая $y=kx$ имеет с графиком функции $y=-x^2-4$ ровно одну общую точку. Постройте этот график и все такие прямые.
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.
Постройте график функции $y=x^2-x-2|x-1|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-2,25$
2. $p∈(-2,25; 0)∪(0; +∞)$
3. $p∈(-2,25; -0,25)∪(0; +∞)$
…