Задание 22 из ОГЭ по математике: задача 71

Разбор сложных заданий в тг-канале:

Постройте график функции $y={|x-2|}+{|x-5|}+x-5$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=0$
2. $a=2$
3. $a∈(-∞; 0)$
4. $a∈(0; +∞)$
В ответ запишите номер верного варианта ответа.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Постройте график функции $y=|x|(x-1)-5x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p∈(-∞; -9)∪(4; +∞)$
2. $p=-9$ и $p=4$
3. $p∈(-9; 4)$

Постройте график функции $y={(3x^2+6x)|x|} / {x+2}$ и определите, при каких значениях $b$ прямая $y=b$ не имеет с графиком ни одной общей точки.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!