Задание 22 из ОГЭ по математике: задача 71

Разбор сложных заданий в тг-канале:

Постройте график функции $y={|x-2|}+{|x-5|}+x-5$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=0$
2. $a=2$
3. $a∈(-∞; 0)$
4. $a∈(0; +∞)$
В ответ запишите номер верного варианта ответа.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Известно, что вершина параболы находится в начале координат и проходит через точку $(1;3)$. Вычислите, в каких точках парабола пересекает прямую $y=243$. В ответ запишите наибольшую аб…

Постройте график функции $y={|x-1|}-{|3-x|}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
1. $a=-2$
2. $a=2$
3. $a∈(-2; 2)$
4. $a∈(2; +∞)$

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!