Задание 22 из ОГЭ по математике: задача 71
Постройте график функции $y={|x-2|}+{|x-5|}+x-5$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=0$
2. $a=2$
3. $a∈(-∞; 0)$
4. $a∈(0; +∞)$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y=|x|(x-1)-5x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p∈(-∞; -9)∪(4; +∞)$
2. $p=-9$ и $p=4$
3. $p∈(-9; 4)$
…
Постройте график функции $y={(3x^2+6x)|x|} / {x+2}$ и определите, при каких значениях $b$ прямая $y=b$ не имеет с графиком ни одной общей точки.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.