Задание 22 из ОГЭ по математике: задача 70

Разбор сложных заданий в тг-канале:

Постройте график функции $y={|x-2|}+{|x-4|}-x-2$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
1. $a=-4$
2. $a=4$
3. $a∈(-∞; -4)$
4. $a∈(-4; +∞)$
В ответ запишите номер верного варианта ответа.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Известно, что квадратичная функция проходит через точки $(0; 12)$, $(1; 5)$ и $(9; 21)$. Найдите координату вершины данной параболы $x_в$.

Постройте график функции $y=x^2-4|x|-2x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно одну общую точку.

Постройте график функции $y=\{{\table {-x+5, \text ' при 'x<2}; {2x-1, \text ' при ' 2≤x<4}; {-x+11,\text ' при ' x≥4};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!