Задание 22 из ОГЭ по математике: задача 49

Разбор сложных заданий в тг-канале:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(-x+3y-6)^2+(x-y+2)^2$? В ответ запишите значение переменной $x$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите все значения $k$, при каждом из которых прямая $y=kx$ имеет с графиком функции $y=-x^2-1$ ровно одну общую точку. Постройте этот график и все такие прямые.

Постройте график функции

 $y=\{{\table {4x-2, \text ' при 'x<2}; {-x+8, \text ' при ' 2≤x<4}; {2x-4,\text ' при ' x≥4};}$
и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Постройте график функции $y=-{x+2}/{x^2+2x}+1$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!