Задание 22 из ОГЭ по математике: задача 72
Постройте график функции $y={|x-2|}+{|x+1|}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=1$
2. $a=3$
3. $a∈(-∞; 3)$
4. $a∈(3; +∞)$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каких значениях $a$ неравенство $x^2+(a-6)x+21/4-a≤0$ не имеет решений?
1. $a∈(0; 3)$
2. $a∈(0; 5)$
3. $a∈(3; 5)$
4. Решений нет
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.
Известно, что квадратичная функция проходит через точки $(0; 12)$, $(1; 5)$ и $(9; 21)$. Найдите координату вершины данной параболы $x_в$.