Задание 22 из ОГЭ по математике: задача 72
Постройте график функции $y={|x-2|}+{|x+1|}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=1$
2. $a=3$
3. $a∈(-∞; 3)$
4. $a∈(3; +∞)$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y={(x-2)(x^2-5x+4)}/{x-1}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее такое…
Известно, что квадратичная функция проходит через точки $(0; 12)$, $(1; 5)$ и $(9; 21)$. Найдите координату вершины данной параболы $x_в$.
Постройте график функции ${(√{x^2+4x+3})^2}/{x+1}$ и определите, при каких значениях $k$ прямая $y=kx$ не имеет с графиком данной функции общих точек.
1. $k=0$
2. $k=-2$
3. $k∈[-2; 0)∪{{1}}$
4…