Задание 22 из ОГЭ по математике: задача 72

Разбор сложных заданий в тг-канале:

Постройте график функции $y={|x-2|}+{|x+1|}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=1$
2. $a=3$
3. $a∈(-∞; 3)$
4. $a∈(3; +∞)$
В ответ запишите номер верного варианта ответа.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.

Постройте график функции $y={(x^2+2x-3)(x^2+3x-10)} / {x^2+x-6}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком ровно одну общую точку.

Известно, что квадратичная функция проходит через точки $(0; 12)$, $(1; 5)$ и $(9; 21)$. Найдите координату вершины данной параболы $x_в$.

Постройте график функции $y=x^2-|5x+6|$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком ровно три общие точки.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!