Задание 22 из ОГЭ по математике: задача 72
Постройте график функции $y={|x-2|}+{|x+1|}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=1$
2. $a=3$
3. $a∈(-∞; 3)$
4. $a∈(3; +∞)$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что вершина параболы находится в начале координат и проходит через точку $(1;3)$. Вычислите, в каких точках парабола пересекает прямую $y=243$. В ответ запишите наибольшую аб…
Постройте график функции
$y=\{{\table {x, \text ' при 'x<3}; {-2x+9, \text ' при ' 3≤x<4,5}; {2x-9,\text ' при ' x≥4,5};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
Известно, что квадратичная функция проходит через точки $(0; 12)$, $(1; 5)$ и $(9; 21)$. Найдите координату вершины данной параболы $x_в$.