Задание 22 из ОГЭ по математике: задача 29

Разбор сложных заданий в тг-канале:

При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каких значениях $a$ неравенство $x^2+(a-6)x+21/4-a≤0$ не имеет решений?
1. $a∈(0; 3)$
2. $a∈(0; 5)$
3. $a∈(3; 5)$
4. Решений нет

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.

Постройте график функции $y=x^2-8|x|+7$. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!