Задание 22 из ОГЭ по математике: задача 29
При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.
Постройте график функции $y=\{{\table {x^2+6x+9, если x>-6,}; {-{12} / {x}, если x<-6};}$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком одну или две общие точки.
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.