Задание 22 из ОГЭ по математике: задача 29
При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.
Постройте график функции ${(√{x^2-x-6})^2}/{x+2}$ и определите, при каких значениях $m$ прямая $y=m$ не имеет с графиком данной функции общих точек.
1. $m∈[-5; 0)$
2. $m=-5$
3. $m=0$
4. $m∈(0; +∞)$
…
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.