Задание 22 из ОГЭ по математике: задача 29
При каком наибольшем значении $a$ прямая $y=ax$ имеет с графиком функции $y=x^2+1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y={(x+1)(x^2+7x+10)} / {x+2}$ и определите, при каких значениях параметра $m$ прямая $y=m$ имеет с графиком ровно одну общую точку.
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.
Постройте график функции $y={(x^2+1)(x-1)}/{1-x}$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее такое з…