Задание 22 из ОГЭ по математике: задача 28

Разбор сложных заданий в тг-канале:

При каком наибольшем значении $a$ прямая $y=ax-2$ имеет с графиком функции $y=x^2-1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Постройте график функции $y=x^2-5|x|+x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-9$
2. $p=-4$
3. $p∈(-9; -4)∪(0; +∞)$
4. $p∈(-9; 4)$ …

Найдите все значения $k$, при каждом из которых прямая $y=kx$ имеет с графиком функции $y=-x^2-1$ ровно одну общую точку. Постройте этот график и все такие прямые.

Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!