Задание 22 из ОГЭ по математике: задача 28
При каком наибольшем значении $a$ прямая $y=ax-2$ имеет с графиком функции $y=x^2-1$ ровно одну общую точку (касается)? Построить график квадратичной функции и касательные к нему.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.
Постройте график функции $y={(1-x)(x^2+x-6)}/{x-2}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее такое …
Постройте график функции $y=|x|(x-1)-5x$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p∈(-∞; -9)∪(4; +∞)$
2. $p=-9$ и $p=4$
3. $p∈(-9; 4)$
…