Задание 22 из ОГЭ по математике: задача 41

Разбор сложных заданий в тг-канале:

Постройте график функции $y=|x^2-2x-8|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно четыре общие точки.
1. $p=0$
2. $p=9$
3. $p∈(9; +∞)$
4. $p∈(0; 9)$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(4x+2y-1)^2+(4x-12y-36)^2$? В ответ запишите значение переменной $x$.

Постройте график функции $y={x^4-2x^2-8}/{(x-2)(x+2)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее так…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!