Задание 22 из ОГЭ по математике: задача 41

Разбор сложных заданий в тг-канале:

Постройте график функции $y=|x^2-2x-8|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно четыре общие точки.
1. $p=0$
2. $p=9$
3. $p∈(9; +∞)$
4. $p∈(0; 9)$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

Постройте график функции $y=1-{x+1} / {x^2+x}$ и определите, при каких значениях параметра $n$ прямая $y=n$ не имеет с графиком ни одной общей точки.

Постройте график функции $y={x^4-10x^2+9}/{(x-1)(x+1)}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку. В ответ запишите наибольшее та…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!