Задание 22 из ОГЭ по математике: задача 42

Разбор сложных заданий в тг-канале:

Постройте график функции $y=|x^2+3x-4|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=0$
2. $p=6,25$
3. $p∈0∪(6,25; +∞)$
4. $p∈(0; 6,25)$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Постройте график функции ${(√{x^2-1})^2}/{x-1}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=0$
2. $a=2$
3. $a∈(0; 2]$
4. $a∈(2; +∞)$

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

Постройте график функции $y={(x^2-4x)|x|} / {x-4}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком ни одной общей точки.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!