Задание 22 из ОГЭ по математике: задача 42

Разбор сложных заданий в тг-канале:

Постройте график функции $y=|x^2+3x-4|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=0$
2. $p=6,25$
3. $p∈0∪(6,25; +∞)$
4. $p∈(0; 6,25)$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

Известно, что квадратичная функция проходит через точки $(-1; 8)$, $(0; 3)$ и $(2; -1)$. Найдите координату вершины данной параболы $x_в$.

Постройте график функции $y={|x-6|}-{|x+4|}+x+1$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=-3$
2. $a=7$
3. $a∈(-3; 7)$
4. …

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!