Задание 22 из ОГЭ по математике: задача 43

Разбор сложных заданий в тг-канале:

Постройте график функции $y=|x^2-x-6|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

Постройте график функции $y={|2x-6|}-{|2x+4|}+x$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно три общие точки.
1. $a∈(-7; 8)$
2. $a=(-∞; -7)∪(8; +∞)$

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

Постройте график функции ${(√{x^2-1})^2}/{x-1}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=0$
2. $a=2$
3. $a∈(0; 2]$
4. $a∈(2; +∞)$

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!