Задание 22 из ОГЭ по математике: задача 43
Постройте график функции $y=|x^2-x-6|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.
Известно, что квадратичная функция проходит через точки $(0; 5)$, $(-3; -7)$ и $(3; -55)$. Найдите координату вершины $x_в$ данной параболы.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.