Задание 22 из ОГЭ по математике: задача 91

Разбор сложных заданий в тг-канале:

Постройте график функции $y={2|x|-1} / {|x|-2x^2}$ и определите, при каких значениях $m$ прямая $y=mx$ не имеет с графиком ни одной общей точки.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|3x-4y+8|+|3x+3y-6|$? В ответ запишите значение переменной $x$.

Постройте график функции $y=\{{\table {1/2x+1, \text ' при 'x<2}; {-2x+6, \text ' при ' 2≤x<3}; {4x-12,\text ' при ' x≥3};}$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно 2 общие точки.
В ответ запишите наибольшее такое значение.

Постройте график функции $y={|x-6|}-{|x+4|}+x+1$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=-3$
2. $a=7$
3. $a∈(-3; 7)$
4. …

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!