Задание 22 из ОГЭ по математике: задача 66
Постройте график функции $y={|x-6|}-{|x+4|}+x+1$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=-3$
2. $a=7$
3. $a∈(-3; 7)$
4. $a=-3$ и $a=7$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции ${(√{x^2-2x-8})^2}/{x-4}$ и определите, при каких значениях $a$ прямая $y=a$ не имеет с графиком данной функции общих точек.
1. $a=0$
2. $a=6$
3. $a∈(0; 6]$
4. $a∈(0; +∞)$
…
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.