Задание 22 из ОГЭ по математике: задача 66

Разбор сложных заданий в тг-канале:

Постройте график функции $y={|x-6|}-{|x+4|}+x+1$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно две общие точки.
1. $a=-3$
2. $a=7$
3. $a∈(-3; 7)$
4. $a=-3$ и $a=7$
В ответ запишите номер верного варианта ответа.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Известно, что вершина параболы находится в начале координат и проходит через точку $(4; -3,2)$. Вычислите, в каких точках парабола пересекает прямую $y=-20$. В ответ запишите наибольшу…

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(x+5y-1)^2+(x-10y-16)^2$? В ответ запишите значение переменной $x$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!