Задание 22 из ОГЭ по математике: задача 67

Разбор сложных заданий в тг-канале:

Постройте график функции $y={|2x-6|}-{|2x+4|}+x$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно три общие точки.
1. $a∈(-7; 8)$
2. $a=(-∞; -7)∪(8; +∞)$
3. $a∈(-∞; -7)$
4. $a∈(8; +∞)$
В ответ запишите номер верного варианта ответа.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.

Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.

Найдите все значения $t$, при каждом из которых прямая $y=tx$ имеет с графиком функции $y=x^2+4$ ровно одну общую точку. Постройте этот график и все такие прямые.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(3x-4y+8)^2+(3x+3y-6)^2$? В ответ запишите значение переменной $x$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!