Задание 22 из ОГЭ по математике: задача 67
Постройте график функции $y={|2x-6|}-{|2x+4|}+x$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком данной функции ровно три общие точки.
1. $a∈(-7; 8)$
2. $a=(-∞; -7)∪(8; +∞)$
3. $a∈(-∞; -7)$
4. $a∈(8; +∞)$
В ответ запишите номер верного варианта ответа.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $(8x+10y-12)^2+(8x-5y-42)^2$? В ответ запишите значение переменной $x$.
Известно, что квадратичная функция проходит через точки $(0; 11)$, $(-4; 3)$ и $(1; 23)$. Найдите координату вершины $x_в$ данной параболы.
Постройте график функции $y={x-1}/{x^2-x}$ и определите, при каких значениях $k$ прямая $y=kx$ имеет с графиком функции ровно одну общую точку.