Задание 22 из ОГЭ по математике: задача 31

Разбор сложных заданий в тг-канале:

Постройте график функции $y=x^2-x-2|x-1|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-2,25$
2. $p∈(-2,25; 0)∪(0; +∞)$
3. $p∈(-2,25; -0,25)∪(0; +∞)$
4. $p∈(-0,25; 0)$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.

Постройте график функции $y={(x+1)(x^2+7x+10)} / {x+2}$ и определите, при каких значениях параметра $m$ прямая $y=m$ имеет с графиком ровно одну общую точку.

При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|8x+10y-12|+|8x-5y-42|$? В ответ запишите значение переменной $x$.

Постройте график функции $y=1-{2x+1} / {2x^2+x}$ и определите, при каких значениях параметра $n$ прямая $y=n$ не имеет с графиком ни одной общей точки.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!