Задание 22 из ОГЭ по математике: задача 31
Постройте график функции $y=x^2-x-2|x-1|$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно две общие точки.
1. $p=-2,25$
2. $p∈(-2,25; 0)∪(0; +∞)$
3. $p∈(-2,25; -0,25)∪(0; +∞)$
4. $p∈(-0,25; 0)$
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Постройте график функции $y={|x-2|}+{|x-4|}-x-2$ и определите, при каких значениях $a$ прямая $y=a$ имеет с графиком функции ровно одну общую точку.
1. $a=-4$
2. $a=4$
3. $a∈(-∞; -4)$
4. $a∈(-4; +∞)$
…
Постройте график функции $y=x^2-2|x-1|-2x+4$ и определите, при каких значениях $p$ прямая $y=p$ имеет с графиком функции ровно три общие точки.
При каком значении переменных $x$ и $y$ достигается наименьшее значение данного выражения $|x+5y-1|+|x-10y-16|$? В ответ запишите значение переменной $x$.