Задание 25 из ОГЭ по математике

Разбор сложных заданий в тг-канале:
Задача 1

Найдите острые углы прямоугольного треугольника, если его гипотенуза равна $8$, а площадь равна $8√ 3$.

Задача 2

В трапеции $ABCD$ основания $AD$ и $BC$ равны соответственно $72$ и $18$, а сумма углов при основании $AD$ равна $90^°$. Найдите радиус окружности, проходящей через точки $A$ и $B$ и касающейся прям…

Задача 3

Две касающиеся внешним образом в точке $M$ окружности, радиусы которых равны $14$ и $42$, вписаны в угол с вершиной $A$. Общая касательная к этим окружностям, проходящая через точку $M$, пер…

Задача 4

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.

Задача 5

В треугольнике $ABC$ биссектриса $BM$ и медиана $AN$ перпендикулярны, при этом $AN=8$, $BM=12$. Найдите стороны треугольника $ABC$.

Задача 6

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $37:3$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Задача 7

В трапеции $ABCD$ боковая сторона $AB$ перпендикулярна основанию $BC$. Окружность проходит через точки $C$ и $D$ и касается прямой $AB$ в точке $T$. Найдите расстояние от точки $T$ до прямой $CD$, е…

Задача 8

В выпуклом четырёхугольнике $NPLM$ диагональ $NL$ является биссектрисой угла $PNM$ и пересекается с диагональю $PM$ в точке $T$. Найдите $NT$, если известно, что около четырёхугольника $NPLM$ мо…

Задача 9

Окружности с радиусами $9$ и $18$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. Н…

Задача 10

Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…

Задача 11

В треугольнике $ABC$ на его медиане $BN$ отмечена точка $M$ так, что $BM:MN=5:2$. Прямая $AM$ пересекает сторону $BC$ в точке $T$. Найдите отношение площади треугольника $ABM$ к площади четырёхуго…

Задача 12

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Задача 13

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Задача 14

В трапеции $KLMN$ основания $KN$ и $LM$ равны соответственно $80$ и $10$, а сумма углов при основании $KN$ равна $90^°$. Найдите радиус окружности, проходящей через точки $K$ и $L$ и касающейся прям…

Задача 15

В треугольнике $KLM$ биссектриса угла $K$ делит высоту, проведённую из вершины $L$, в отношении $29:21$, считая от точки $L$. Найдите радиус окружности, описанной около треугольника $KLM$, есл…

Задача 16

В треугольнике $ABC$ биссектриса угла $A$ делит высоту, проведённую из вершины $B$, в отношении $17:8$, считая от точки $B$. Найдите радиус окружности, описанной около треугольника $ABC$, если…

Задача 17

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 18$, а углы $B$ и $C$ четырёхугольника равны соответственно $123^°$ и $102^°$.

Задача 18

Найдите площадь трапеции, диагонали которой равны $7$ и $24$, а средняя линия равна $12{,}5$.

Задача 19

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…

Задача 20

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площа…

1 2 3

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!