Задание 25 из ОГЭ по математике: задача 19

Разбор сложных заданий в тг-канале:

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Две касающиеся внешним образом в точке $M$ окружности, радиусы которых равны $14$ и $42$, вписаны в угол с вершиной $A$. Общая касательная к этим окружностям, проходящая через точку $M$, пер…

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!