Задание 25 из ОГЭ по математике: задача 11
В треугольнике $ABC$ на его медиане $BN$ отмечена точка $M$ так, что $BM:MN=5:2$. Прямая $AM$ пересекает сторону $BC$ в точке $T$. Найдите отношение площади треугольника $ABM$ к площади четырёхугольника $MTCN$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В трапеции $KLMN$ основания $KN$ и $LM$ равны соответственно $80$ и $10$, а сумма углов при основании $KN$ равна $90^°$. Найдите радиус окружности, проходящей через точки $K$ и $L$ и касающейся прям…
В треугольнике $ABC$ биссектриса угла $A$ делит высоту, проведённую из вершины $B$, в отношении $17:8$, считая от точки $B$. Найдите радиус окружности, описанной около треугольника $ABC$, если…
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?