Задание 25 из ОГЭ по математике: задача 11

Разбор сложных заданий в тг-канале:

В треугольнике $ABC$ на его медиане $BN$ отмечена точка $M$ так, что $BM:MN=5:2$. Прямая $AM$ пересекает сторону $BC$ в точке $T$. Найдите отношение площади треугольника $ABM$ к площади четырёхугольника $MTCN$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Найдите площадь трапеции, диагонали которой равны $7$ и $24$, а средняя линия равна $12{,}5$.

В трапеции $KLMN$ основания $KN$ и $LM$ равны соответственно $80$ и $10$, а сумма углов при основании $KN$ равна $90^°$. Найдите радиус окружности, проходящей через точки $K$ и $L$ и касающейся прям…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!