Задание 25 из ОГЭ по математике: задача 12

Разбор сложных заданий в тг-канале:

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В трапеции $KLMN$ основания $KN$ и $LM$ равны соответственно $80$ и $10$, а сумма углов при основании $KN$ равна $90^°$. Найдите радиус окружности, проходящей через точки $K$ и $L$ и касающейся прям…

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 18$, а углы $B$ и $C$ четырёхугольника равны соответственно $123^°$ и $102^°$.

Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…

В выпуклом четырёхугольнике $SKLM$ диагональ $SL$ является биссектрисой угла $KSM$ и пересекается с диагональю $KM$ в точке $W$. Найдите $SW$, если известно, что около четырёхугольника $SKLM$ мо…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!