Задание 25 из ОГЭ по математике: задача 17
Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 18$, а углы $B$ и $C$ четырёхугольника равны соответственно $123^°$ и $102^°$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
В трапеции $KLMN$ боковая сторона $KL$ перпендикулярна основанию $LM$. Окружность проходит через точки $M$ и $N$ и касается прямой $KL$ в точке $S$. Найдите расстояние от точки $S$ до прямой $MN$, е…