Задание 25 из ОГЭ по математике: задача 20

Разбор сложных заданий в тг-канале:

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площади треугольника $ABK$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…

В треугольнике $KLM$ биссектриса угла $K$ делит высоту, проведённую из вершины $L$, в отношении $29:21$, считая от точки $L$. Найдите радиус окружности, описанной около треугольника $KLM$, есл…

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!