Задание 25 из ОГЭ по математике: задача 20

Разбор сложных заданий в тг-канале:

Медиана $BM$ и биссектриса $AP$ треугольника $ABC$ пересекаются в точке $K$, длина стороны $AB$ относится к длине стороны $AC$ как $10:7$. Найдите отношение площади четырёхугольника $KPCM$ к площади треугольника $ABK$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $37:3$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!