Задание 25 из ОГЭ по математике: задача 3
Две касающиеся внешним образом в точке $M$ окружности, радиусы которых равны $14$ и $42$, вписаны в угол с вершиной $A$. Общая касательная к этим окружностям, проходящая через точку $M$, пересекает стороны угла в точках $B$ и $C$. Найдите радиус окружности, описанной около треугольника $ABC$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна $8$, а площадь равна $8√ 3$.
Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанно…