Задание 25 из ОГЭ по математике: задача 3

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 3 мин. 15 сек.

Две касающиеся внешним образом в точке $M$ окружности, радиусы которых равны $14$ и $42$, вписаны в угол с вершиной $A$. Общая касательная к этим окружностям, проходящая через точку $M$, пересекает стороны угла в точках $B$ и $C$. Найдите радиус окружности, описанной около треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

На стороне $BC$ остроугольного треугольника $ABC$ $(AB≠ AC)$ как на диаметре построена полуокружность, пересекающая высоту $AL$ в точке $Q$, $AL=25$, $QL=15$, $H$ — точка пересечения высот треугол…

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В трапеции $KLMN$ основания $KN$ и $LM$ равны соответственно $80$ и $10$, а сумма углов при основании $KN$ равна $90^°$. Найдите радиус окружности, проходящей через точки $K$ и $L$ и касающейся прям…

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!