Задание 25 из ОГЭ по математике: задача 6

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 1 сек.

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $37:3$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна $15$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 14$, а углы $B$ и $C$ четырёхугольника равны соответственно $133^°$ и $107^°$.

Окружности с радиусами $9$ и $18$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. Н…

В выпуклом четырёхугольнике $SKLM$ диагональ $SL$ является биссектрисой угла $KSM$ и пересекается с диагональю $KM$ в точке $W$. Найдите $SW$, если известно, что около четырёхугольника $SKLM$ мо…

Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Популярные материалы

Составим твой персональный план подготовки к ОГЭ. Абсолютно бесплатно!

Хочу!