Задание 25 из ОГЭ по математике: задача 7
В трапеции $ABCD$ боковая сторона $AB$ перпендикулярна основанию $BC$. Окружность проходит через точки $C$ и $D$ и касается прямой $AB$ в точке $T$. Найдите расстояние от точки $T$ до прямой $CD$, если $AD=60$, $BC=15$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанно…
Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
В треугольнике $KLM$ биссектриса угла $K$ делит высоту, проведённую из вершины $L$, в отношении $29:21$, считая от точки $L$. Найдите радиус окружности, описанной около треугольника $KLM$, есл…