Задание 25 из ОГЭ по математике: задача 22

Разбор сложных заданий в тг-канале:

Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанной окружности треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В треугольнике $KLM$ биссектриса угла $K$ делит высоту, проведённую из вершины $L$, в отношении $29:21$, считая от точки $L$. Найдите радиус окружности, описанной около треугольника $KLM$, есл…

Окружности с радиусами $2$ и $8$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. На…

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!