Задание 25 из ОГЭ по математике: задача 22

Разбор сложных заданий в тг-канале:

Из вершины прямого угла $C$ треугольника $ABC$ проведена высота $CP$. Радиус окружности, вписанной в треугольник $BCP$, равен $48$, тангенс угла $BAC$ равен ${12} / {5}$. Найдите радиус вписанной окружности треугольника $ABC$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В трапеции $ABCD$ боковая сторона $AB$ перпендикулярна основанию $BC$. Окружность проходит через точки $C$ и $D$ и касается прямой $AB$ в точке $T$. Найдите расстояние от точки $T$ до прямой $CD$, е…

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

В трапеции $ABCD$ боковая сторона $AB$ перпендикулярна основанию $BC$. Окружность проходит через точки $C$ и $D$ и касается прямой $AB$ в точке $T$. Найдите расстояние от точки $T$ до прямой $CD$, е…

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!