Задание 25 из ОГЭ по математике: задача 8
В выпуклом четырёхугольнике $NPLM$ диагональ $NL$ является биссектрисой угла $PNM$ и пересекается с диагональю $PM$ в точке $T$. Найдите $NT$, если известно, что около четырёхугольника $NPLM$ можно описать окружность, $PL=18$, $TL=10$.
Объект авторского права ООО «Легион»
Вместе с этой задачей также решают:
В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…
Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении $37:3$, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой…