Задание 25 из ОГЭ по математике: задача 9

Разбор сложных заданий в тг-канале:
Сложность:
Среднее время решения: 2 мин. 34 сек.

Окружности с радиусами $9$ и $18$ касаются внешним образом. Точки $K$ и $L$ лежат на первой окружности, точки $M$ и $N$ — на второй. При этом $KM$ и $LN$ — общие внешние касательные окружностей. Найдите расстояние между прямыми $KL$ и $MN$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

В равнобедренную трапецию, периметр которой равен $104$, а площадь равна $624$, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего осн…

Основания трапеции относятся как $2:7$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Основания трапеции относятся как $3:5$. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?

Середина $K$ стороны $AD$ выпуклого четырёхугольника $ABCD$ равноудалена от всех его вершин. Найдите $AD$, если $BC = 18$, а углы $B$ и $C$ четырёхугольника равны соответственно $123^°$ и $102^°$.

Популярные материалы

Составим твой персональный план подготовки к ОГЭ

Хочу!