Задание 13 из ЕГЭ по математике (профиль). Страница 2

За это задание вы можете получить 2 балла на ЕГЭ в 2026 году
Разбор сложных заданий в тг-канале:
Задача 21

а) Решите уравнение $2\sin ({3π} / {2}+x)⋅\cos({π} / {2}+x)=√ {2}\cos(3π-x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[3{π}; {9π}/2] $.

Задача 22

а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.

Задача 23

а) Решите уравнение $4\cos^3x-2√ 3\cos2x+3\cos x=2√ 3$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ \( -{17π} / {2} ; -7π\]$.

Задача 24

а) Решите уравнение $\cos2x=\sin(x-{5π} / {2})$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[5{π}; {13π}/2]$.

Задача 25

а) Решите уравнение $2\log_2√ {25x^4+7}-\log_2(63x^2+1)=1$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

Задача 26

а) Решите уравнение ${sin x - 1}/{1 + cos2x}= {sin x - 1}/{1 + cos(π+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.

Задача 27

а) Решите уравнение ${sin x + 1}/{1 - cos(2x)}= {sin x + 1}/{1 + cos({π}/{2}+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.

Задача 28

а) Решите уравнение $2(sin x - cos x) = tg x - 1$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[{3π}/{2};3π]$.

Задача 29

а) Решите уравнение $2(sin x + cos x) = ctg x + 1$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[-2π;-{π}/{2}]$.

Задача 30

а) Решите уравнение $2 cos x(cos x + cos {5π}/{4})+ cos x + cos {3π}/{4}= 0$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $[π;{5π}/{2})$.

Задача 31

а) Решите уравнение $(4 cos^{2} (3x) - 4 sin (3x) - 1) ·√{-ctg x} = 0$.

б) Укажите корни этого уравнения, принадлежащие промежутку $({π}/{2};2π]$.

Задача 32

а) Решите уравнение $(2 sin^2 4x - 3 cos 4x)·√{tg x} = 0$.

б) Укажите корни этого уравнения, принадлежащие промежутку $(0;{3π}/{2}]$.

Задача 33

а) Решите уравнение ${sin3πx}/{1 + √3 ctgπ x}= 0$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-1{2}/{5};2.5]$.

Задача 34

а) Решите уравнение $2 log_x^2 √5 = {5ln√5}/{ln x} - 2$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $(1.5; 7]$.

Задача 35

а) Решите уравнение $log^2_x√2 = 2 - {ln√2}/{ln x}$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $(0.8; 1]$.

Задача 36

а) Решите уравнение $1 - 2 cos^2 x = sin(π - x)$.

б) Найдите корни уравнения, принадлежащие промежутку $[{9π}/{2};{13π}/{2})$.

Задача 37

а) Решите уравнение $3 - 2 cos^2 x + 3 sin(x - π) = 0$.

б) Найдите корни уравнения, принадлежащие промежутку $[{7π}/{2};{11π}/{2})$.

Задача 38

а) Решите уравнение ${sin 2x}/{cos(x + {π}/{2})} = √3$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[{5π}/{2};4π)$.

Задача 39

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

Задача 40

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

1 2 3

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!