Задание 13 из ЕГЭ по математике (профиль): задача 28

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2(sin x - cos x) = tg x - 1$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[{3π}/{2};3π]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.

а) Решите уравнение $2\log_2√ {25x^4+7}-\log_2(63x^2+1)=1$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

1) Решите уравнение $\cos2(x+{π} / {6})+4\sin(x+{π} / {6})={5} / {2}$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

а) Решите уравнение $√ {-7\tg x}(4\cos^2x-8\cos x+3)=0$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.