Задание 13 из ЕГЭ по математике (профиль): задача 31

Разбор сложных заданий в тг-канале:

а) Решите уравнение $(4 cos^{2} (3x) - 4 sin (3x) - 1) ·√{-ctg x} = 0$.

б) Укажите корни этого уравнения, принадлежащие промежутку $({π}/{2};2π]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $2\cos^3x+\cos x+2√ 2=2√ 2\sin^2x$. б) Найдите все корни данного уравнения, принадлежащие отрезку $$.

а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.

а) Решите уравнение $2\log_2√ {25x^4+7}-\log_2(63x^2+1)=1$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.

а) Решите уравнение $2(sin x - cos x) = tg x - 1$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[{3π}/{2};3π]$.