Задание 13 из ЕГЭ по математике (профиль): задача 31

Разбор сложных заданий в тг-канале:

а) Решите уравнение $(4 cos^{2} (3x) - 4 sin (3x) - 1) ·√{-ctg x} = 0$.

б) Укажите корни этого уравнения, принадлежащие промежутку $({π}/{2};2π]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение $2\sin ({3π} / {2}+x)⋅\cos({π} / {2}+x)=√ {2}\cos(3π-x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[3{π}; {9π}/2] $.

а) Решите уравнение $2√ 3⋅\cos^2(x-{3π} / {2})-\sin2x=0$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{9π}/2; -3{π}] $.

а) Решите уравнение $2\cos ({3π} / {2}-x)⋅\sin({π} / {2}-x)=√ 3\sin(2π+x)$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[-{11π}/2; -3{π}]$.

а) Решите уравнение $\sin2x=√ 2\sin({3π} / {2}-x)$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $[-3{π}; -{3π}/2]$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!