Задание 13 из ЕГЭ по математике (профиль): задача 6

Разбор сложных заданий в тг-канале:

а) Решите уравнение $4\sin^3x+\sin x+4\cos^2x=4$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ [{π}/2; 2{π}] $.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение $2(sin x + cos x) = ctg x + 1$.

б) Укажите корни этого уравнения, принадлежащие промежутку $[-2π;-{π}/{2}]$.

а) Решите уравнение $2+\log_2(7x^2+1)-\log_{√ 2}√ {9x^4+7}=0$. б) Найдите корни данного уравнения, принадлежащие отрезку $$.