Задание 13 из ЕГЭ по математике (профиль): задача 5

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2\cos^3x+√ 3\sin^2x-2\cos x=0$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ [-{7π}/2; -2{π}] $.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

1) Решите уравнение $\cos2(x+{π} / {6})+4\sin(x+{π} / {6})={5} / {2}$.

б) Найдите корни данного уравнения, принадлежащие отрезку $[{3π}/{2};3π]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.

а) Решите уравнение $3 - 2 cos^2 x + 3 sin(x - π) = 0$.

б) Найдите корни уравнения, принадлежащие промежутку $[{7π}/{2};{11π}/{2})$.

Онлайн-школа «Турбо»

  • Прямая связь с преподавателем
  • Письменные дз с проверкой
  • Интересные онлайн-занятия
  • Душевное комьюнити
Получить бесплатно

Составим твой персональный план подготовки к ЕГЭ. Абсолютно бесплатно!

Хочу!