Задание 13 из ЕГЭ по математике (профиль): задача 5

Разбор сложных заданий в тг-канале:

а) Решите уравнение $2\cos^3x+√ 3\sin^2x-2\cos x=0$.

б) Найдите все корни данного уравнения, принадлежащие отрезку $ [-{7π}/2; -2{π}] $.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

а) Решите уравнение ${sin3πx}/{1 + √3 ctgπ x}= 0$.

б) Найдите все корни этого уравнения, принадлежащие промежутку $[-1{2}/{5};2.5]$.

а) Решите уравнение ${sin x - 1}/{1 + cos2x}= {sin x - 1}/{1 + cos(π+ x)}$.

б) Найдите все корни этого уравнения, принадлежащие отрезку $[-{3π}/{2};-{π}/{2}]$.

а) Решите уравнение: $sin^2 x + sin^2{π}/{6}= cos^2 2x + cos^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $[{7π}/{2}; {9π}/{2}]$.

а) Решите уравнение: $cos^2 x + cos^2{π}/{6}= cos^2 2x + sin^2{π}/{3}$.

б) Укажите все корни, принадлежащие промежутку $({7π}/{2};{9π}/{2}]$.